Measurement of chlorpyrifos adducts to plasma cholinesterase: A new tool for monitoring exposures to organophosphate pesticides

Christopher Simpson, Ph.D. Associate Professor, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA USA

Outline

- Background on organophosphorus (OP) pesticides chemistry & toxicology
- Measuring human exposure to OP pesticides via cholinesterase monitoring
- Enhancements to cholinesterase monitoring
 - In vitro studies (human blood)
 - Application to monitoring occupational exposures in farm workers

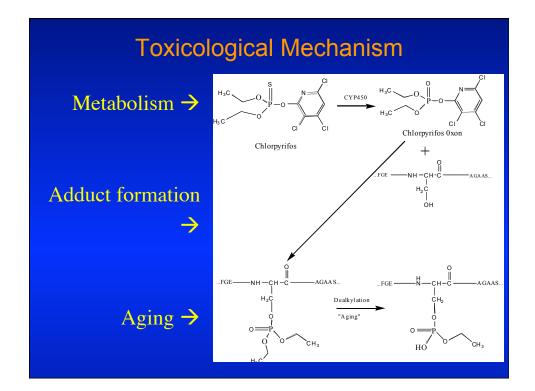
Exposure to OP pesticides and Health

- OP pesticides are still widely used in agriculture
- The abundant use of OP pesticides world wide causes several hundred thousand poisonings per year¹
- The primary acute toxicological effect of OP exposure is related to inhibition of cholinesterase enzymes.
- Chronic low-level (non-occupational) exposure to OP pesticides is associated with neurological deficits and behavioral impairment.² The mechanism behind these long term health effects is unclear
- 1 Worek et al, 1999, Hum. Exp. Toxicol. 16(8): 466-72
- 2 Marks et al, 2010, Environ Health Perspect. 118(12):1768-74

Cholinesterase testing for monitoring occupational exposures to OP pesticides

- Advantages
 - Relatively fast and inexpensive
 - Test-kits available for use in the field

Disadvantages

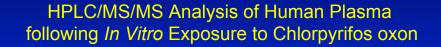

- Need baseline activity measure for each worker
- Lack of specificity
 - Does not identify specific pesticide
 - High frequency of false positives
- Lack of sensitivity
 - Does not provide reliable evidence for exposures at inhibition levels < ~20%

Project Aims

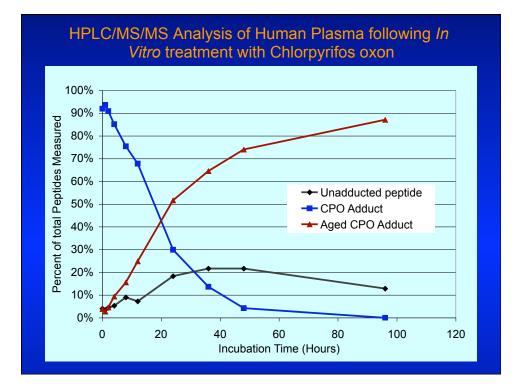
- Develop/validate a sensitive, accurate and robust analytical procedure based on HPLC/MS/MS for the measurement of OP-adducts to plasma ChE (butyryl ChE, BChE).
- Evaluate the relationships between OPadduct levels, and ChE activity *in vitro*, and in humans exposed to OP pesticides.

Measurement of OP-adducts to plasma ChE by HPLC/MS/MS.

- A "protein adduct" is the compound formed when a chemical binds (irreversibly) to a protein.
- Potential advantages:
 - Specific
 - Sensitive
- Assay initially developed for plasma cholinesterase; could subsequently be expanded to quantify adducts to other proteins

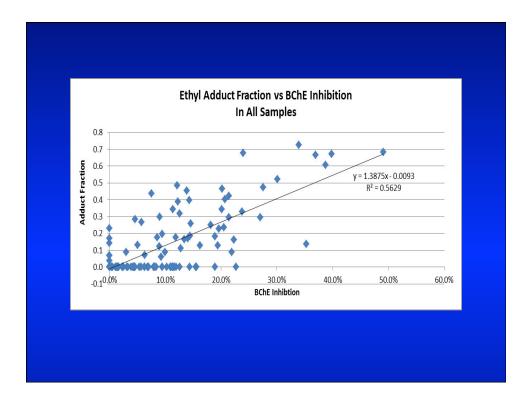


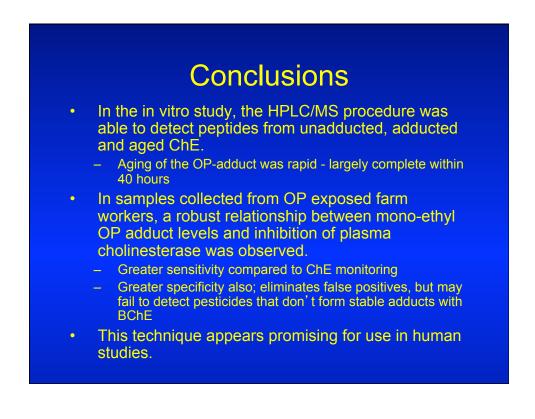

Measurement of OP-adducts to plasma ChE by HPLC/MS/MS.


- A peptide from the active site of ChE, containing the OP adduct, is separated and quantified using HPLC/MS/MS
- Different peptides corresponding to unadducted enzyme, dialkyl-adducts and aged (monoalkyl)-adducts can be detected.
- Ratios of these different adducts provide a measure of the extent of enzyme inhibition and the proportion of aged enzyme

In vitro Study

- Human plasma was dosed with chlorpyrifosoxon.
- Aliquots were collected after 1, 2, 4, 8, 24, 36, and 48 hours following treatment
- Samples analyzed for cholinesterase activity and were also analyzed by LC/MS/MS to measure adducts





Farmworker Study

- Study population: handlers & applicators participating in the WA State cholinesterase monitoring program
- Participants had blood drawn prior to the spray season (baseline sample)
- Follow-up blood samples were drawn after working with OP/carbamate pesticides for 30 hrs within a 30 day period
- 128 of these follow up samples were tested for OP adducts. Adduct levels were compared with plasma ChE depression.

Acknowledgements

UW researchers

Michael Paulsen Richard Fenske Matthew Keifer Clem Furlong Lucio Costa Gretchen Onstad Ingrid Lecreux Alizee Barbier-Maderou Travis Cook

Jon Hoffman Giang Ong Joe Kim

UW researchers

Toby Cole Chantrelle Johansen Ahn Tran

Collaborators Dana Barr (CDC) Charles Thompson (U. Montana)

Funding UW_DEOHS NIOSH U50 OH 007544 (PNASH)